金融機関経営論2

第5回講義 10月14日(火)

前週の課題

- 問題 以下の問いに答えなさい。
- ①いま、行使価格500円のコールプレミアムが50円、 行使価格500円のプットプレミアムが38円となっている とき、ストラドルの売りを組んだとする。このとき満期の 原資産価格が(a)400円のとき、(b)500円のとき、(c) 600円のとき、ペイオフはいくらになるか?ただし、時 間経過による価値の変化は含めない。
- ②原資産価格500円、行使価格460円のコールプレミアムが70円であるとする。このとき、本源的価値と時間価値はそれぞれいくらになるか?

答え

- ①ストラドルの売り=コールのショート+プットのショートなので、契約当初に50+38=88円のプレミアムを得る。
 - (a)400円のときは、プットが行使されて400-500=-100だから、100円の損失。いま時間価値を考慮しないので、-100+88=-12。よって12円の損失。
 - (b)500円のときは、オプションが行使されず、88円の利益。
 - (c)600円のときは、(a)とは違いコールが行使されて100円の損失。いま時間価値を考慮しないので、一100+88=-12。よって12円の損失。

② 本質的価値: 500-460=40円

時間価値: 70-40=30円

- 5. 1 プットコール・パリティ
- プットとコールの裁定

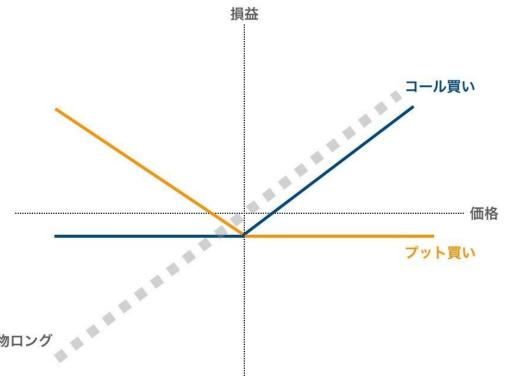
投資行動	現在のCF	満期のCF	
		S*≧K	S* <k< th=""></k<>
コール買いプット売り	—С Р	S*-K 0	0 S*-K
原資産売り 割引債買い	S - K/(1+r)	—S* K	—S* K
合計	X	0	0

投資行動	現在のCF	満期のCF	
		S*≧K	S* <k< th=""></k<>
コール売り	С	K-S*	0
プット買い	— P	0	K-S*
原資産買い	- s	S*	S*
割引債発行	K/(1+r)	-K	-K
合計	Y	0	0

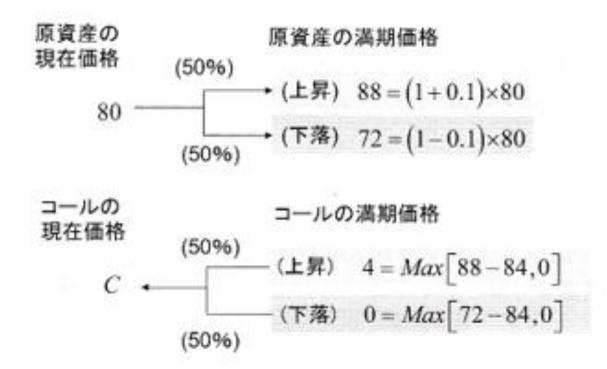
- プットコール・パリティ式
 - 裁定が働くならばX=Y=O
 - C=P+S-K/(1+r)

■ C: 現在のコール・プレミアム

■ P: 現在のプット・プレミアム


■ S: 現在の原資産の価格

■ S*:将来の原資産の価格

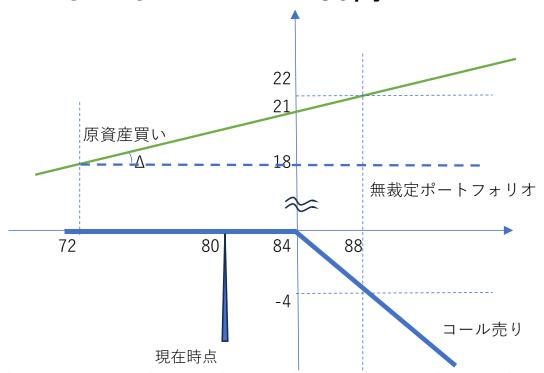

■ K: 権利行使価格

r: 現在から満期までのリスクフリー・レート

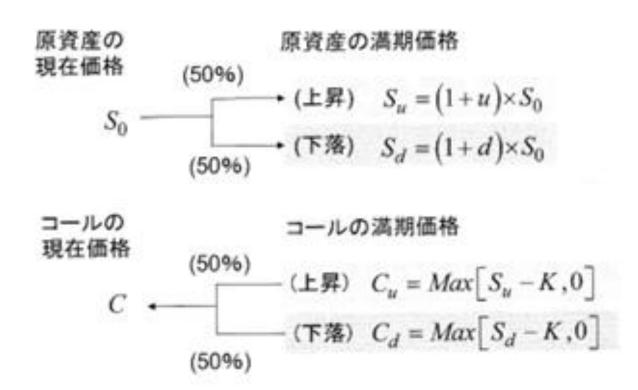
■ C=P+S-K/(1+r) 先物のロング

- 5.2 二項モデル
- ①数値例による説明

※リスクフリーレートは5%とする。


- 無裁定(完全ヘッジ)ポートフォリオ
- [1単位のコールのショート]+ [△単位の原資産のロング]

	現時点	満期時点	
		下落	上昇
1単位のコールの売り	— С	0	-4
Δ単位の原資産の買い	Δ08	72∆	Δ88
合計	-C+80Δ	O+72Δ	- 4+88∆


- 満期時点のペイオフが同じになるように最適へッジ比率∆を求める
- $0+72\Delta = -4+88\Delta \Rightarrow \Delta = 0.25$
- 無裁定ポートフォリオの満期時点の価値は、18円

- 現時点でのポートフォリオの価値は、この18円を リスクフリーレートで割り引いたものに等しいので
- $-C+80\times0.25=18/(1+0.05)$
 - ⇒ C=20-17.14=2.86円

■ ②二項モデルの一般化

※リスクフリーレートはr%とする

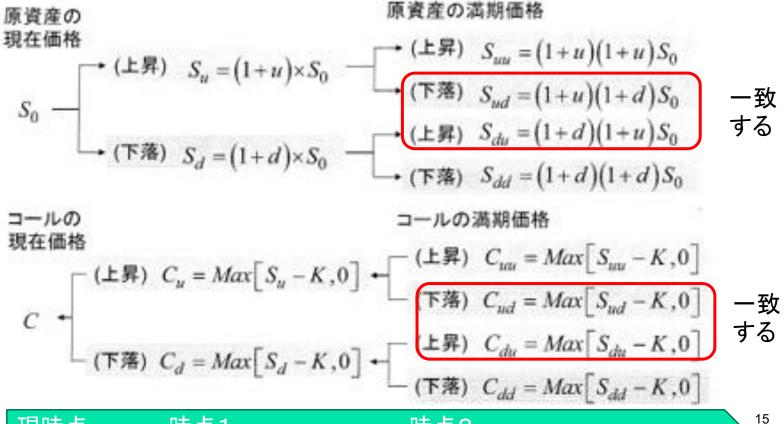
- 無裁定(完全ヘッジ)ポートフォリオ
- [1単位のコールのショート]+ [△単位の原資産のロング]

	現時点	満期時点	
		下落	上昇
1単位のコールの売り	- С	$-C_d$	— С _и
Δ単位の原資産の買い	$\Delta \times S_0$	$\Delta \times S_d$	$\Delta \times S_u$
合計	$-C+\Delta \times S_0$	$-C_d + \Delta \times S_d$	$-C_{U}+\Delta \times S_{U}$

満期時点のペイオフが同じになるように最適へッジ比率∆を求める

$$-C_d + \Delta \times S_d = -C_u + \Delta \times S_u$$

満期時点の価値をリスクフリーレートで割り引いた ものが、現在の価値に等しいので


$$-C + \Delta \times S_0 = \frac{(-C_u + \Delta \times S_u)}{(1+r)}$$

■ プレミアム*C*は

$$C = \frac{p^* \times C_u + (1 - p^*) \times C_d}{(1 + r)}$$

- ただし $p^* = \frac{r-d}{u-d}$ 電マルチンゲール(<u>リスク中立) 確率</u>
- p*にはリスクプレミアムは含まれない(リスク中立者による評価)
- また、モデルの当初に設定した原資産の各状態の生起確率(本例では50%)も価格決定には使われていないことに留意。

■ ③多期間二項モデル

現時点 時点1 時点2 時点2 ¹

時点2をもとに時点1のオプションプレミアムを 求める

•
$$C_u = \frac{p^* \times C_{uu} + (1-p^*) \times C_{ud}}{(1+r)}$$
, $C_d = \frac{p^* \times C_{du} + (1-p^*) \times C_{dd}}{(1+r)}$

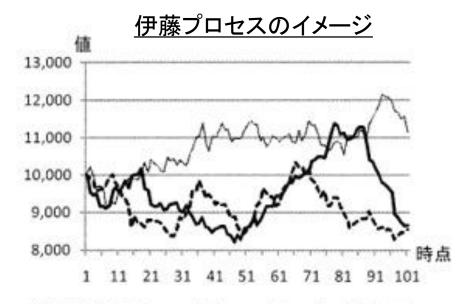
- $t = t = \frac{r-d}{u-d}$
- 時点1をもとに現時点のオプションプレミアムを 求める

$$C = \frac{p^* \times C_u + (1 - p^*) \times C_d}{(1 + r)}$$

$$= \frac{p^{*2} \times C_{uu} + 2p^* (1 - p^*) \times C_{ud} + (1 - p^*)^2 \times C_{dd}}{(1 + r)^2}$$

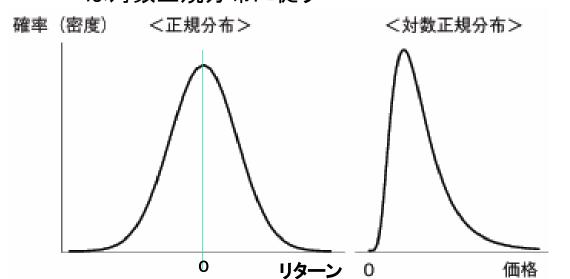
多期間であれば、このバックワードのプロセス を繰り返す

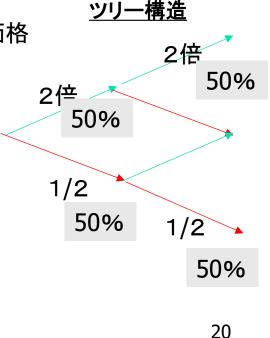
- 5. 6 ブラック・ショールズモデル
- 仮定①:資本市場の完全性
 - 競争市場であり、市場参加者はプライステイカーである
 - 摩擦のない市場であり、税や取引コストがない
 - ■情報の非対称性がなく、情報コストもない
 - 原資産は無限分割可能で、少額でもポートフォリオを構成できる
- 仮定②:同一金利で無制限に貸借可能
- 仮定③:期中の金利は一定
- 仮定④: (満期のある)ヨーロピアンオプション を想定する


- 仮定⑤:原資産に期中の配当はない
- 仮定⑥:原資産価格は、伊藤プロセスに従う

•
$$dS_t = \mu S_t \cdot dt + \sigma S_t \cdot dz$$
 (1)
ドリフト項 ウィーナー過程(ブラウン運動)

- dS_t : 原資産価格の微小変化
- *S_t*:原資産価格
- dt: 時間の微小変化
- μ: 期待リターン
- **σ**:ボラティリティ (標準偏差)
- dz: 標準正規確率過程



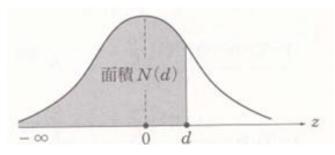

- **■** (1)式の両辺を*S_t*で割ると
- 株価の変化率を、一定のトレンドと一定のリスクを もった定常過程として表す(幾何ブラウン運動)

- 原資産価格が伊藤プロセスに従うとき、 その対数値logS = f は伊藤のレンマから
 - $df = \left(\mu \frac{\sigma^2}{2}\right)dt + \sigma \cdot dz$

■ 原資産のリターンが正規分布に従うとき、原資産価格は対数正規分布に従う

- ブラック・ショールズ・モデルによる解
- $C = S \times N(d_1) + Ke^{-rT} \times N(d_2)$

複製ポートフォリオでは原資 産の保有=利益


満期時点でオプションが行使される可能性を考慮した上での、原資産の現在価値

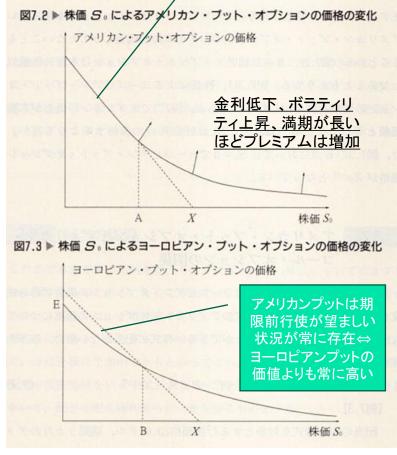
複製ポートフォリオでは割引債の 購入=コスト部分

満期時に支払う額面(=権利行使 価格)を現在価値で割り引いた額 ×実際に支払う可能性

$$d_1 = \frac{\ln(S/X) + (r + \sigma^2/2)T}{\sigma T}$$

$$d_2 = d_1 - \sigma T = \frac{\ln(S/X) + (r - \sigma^2/2)T}{\sigma T}$$

- **■** *C* : コールプレミアム
- S:原資産の現在価格
- K: 権利行使価格
- r : リスクフリーレート
- σ:原資産のボラティリティ
- T:満期までの残存期間
- プットコール・パリティの関係を用いて
- $P = Ke^{-rT} \times N(-d_2) S \times N(-d_1)$
 - P: プットプレミアム
 - (複製ポートフォリオは割引債を発行して資金調達し、原 資産を売る)


■ (例題)原資産価格10,400円、行使価格10,000円、残存期間0.25年、リスクフリーレート3%/年、ボラティリティ20%とする。コール・オプションのプレミアムはいくらか?

S	K	Т	r	σ
10,400	10,000	0.25	0.03	0.2
d ₁	d ₂	N (d ₁)	$N (d_2)$	С
0.517	0.417	0.697	0.662	686

ただし
$$d_2 = d_1 - \sigma \sqrt{T}$$

点Aより株価が低い領域:即座に行使可能

- 5.7 アメリカンオプ ション
- コールのプレミアムはヨーロ ピアンと一致
- プットの権利行使条件は
 - $p \ge Xe^{-rt} S_0$
- しかしアメリカンプットの場合はディープ・イン・ザ・マネーでは即座に行使可能な強い条件が課せられる
 - $p \ge X S_0$

(出所)ジョン・ハル『フィナンシャルエンジニアリング』

- 5.8 その他
- ①配当の影響
 - プット:複製ポートフォリオで考えると(金利収益+配当)を受け取ることになるので、プレミアムを上昇させる要因。
 - コール:逆に、(金利収益+配当)を返済することになるので、プレミアムを下落させる要因。
- ②ボラティリティ
 - ヒストリカルボラティリティ: 過去のデータから求めたボラティリティ。
 - インプライドボラティリティ: プラック・ショールズモデルを用いて逆算したボラティリティ。

- Long-Term Capital Managementの破綻
 - ショールズとマートンが参画していたヘッジファンドが、LTCM。
 - 1997年に発生したアジア通貨危機と、それに伴って発生した翌年のロシア財政危機に際して判断ミス。
 - ショールズらの構築した投資モデルは、ロシア国債が債務不履行に陥る危険性を「100万年に3回」と楽観視。
 - ロシア国債の価格は回復すると予想し、デリバティブを駆使し巨額の投資を継続。
- 長期では、オプションのBS式は成立しない。
- リスクマネジメントでは予想(期待)が重要!

本日の課題

- 問題 以下の問いに答えなさい。
- (1)原資産価格500円、行使価格460円のコールオプションのプレミアムが70円とする。また、満期までのリスクフリーレートは5%とする。このとき、プットオプションのプレミアムはいくらか?
- (2)原資産は現在80円、時点1で確率50%で88円になり、確率50%で72円になるとする。この期間のリスクフリーレートは5%とする。
 - ①リスク中立確率はいくらか?
 - ②この資産の行使価格84円のプットオプションのプレミアムはいくらか?