金融工学

第9回講義 12月2日(火)

前週の課題

- 資産の修正デュレーションが5年、市場価値ベースの自己資本比率が10%である生命保険会社がある。
- いま、同社は、金利が変動しても自己資本が変動しないようにイミュナイゼーションしている。
- この保険会社の負債の修正デュレーションは何年か?(※割り切れない場合は、四捨五入して小数点一位まで答えよ。)

答え

資産の修正デュレーション $D_A = 5$ 年

自己資本比率から資産負債比率を求める

$$\frac{S}{MV_A} = 0.10 \implies \frac{MV_L}{MV_A} = 1 - 0.10 = 0.90$$

イミュナイゼーションの条件 $D_A - \frac{MV_L}{MV_A} D_L = 0$

したがって、

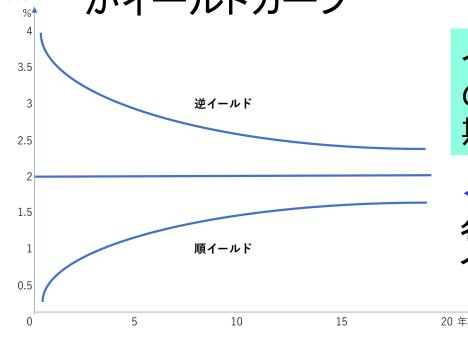
$$D_L = \frac{D_A}{MV_L/MV_A} = \frac{5}{0.9} \approx 5.6$$

答:負債の修正デュレーションは約5.6年

- 9.1 債券利回り
- 複利最終利回り:満期まで保有したときのIRR(内部収益率)のこと
 - クーポンC、額面Q、債券価格Pの利付債では 、以下を満たすr

$$P = \frac{C}{1+r} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \dots + \frac{Q+C}{(1+r)^n}$$

■「スポットレート」:割引債の複利最終利回り

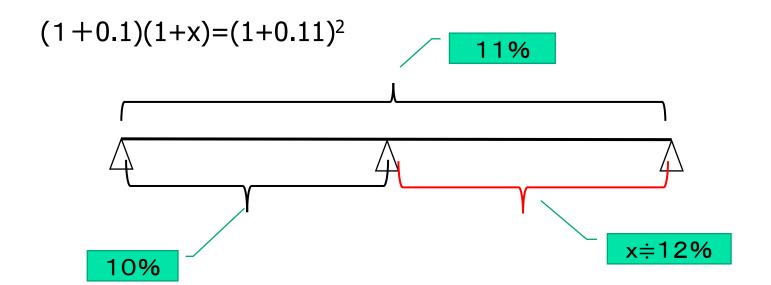

$$P = \frac{Q}{\left(1+r\right)^n}$$

最終利回り

9. イールドカーブ・リスク

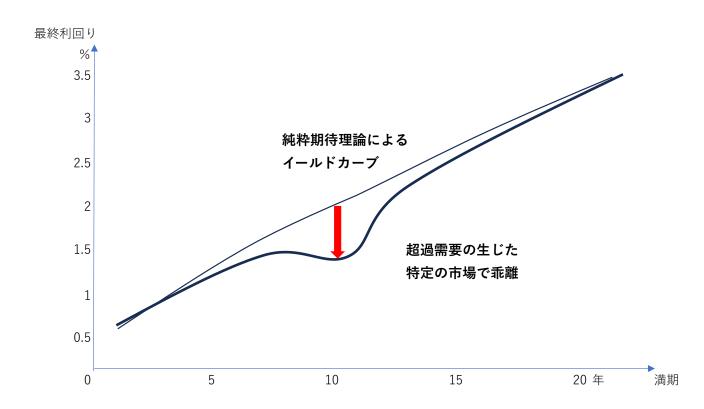
- 9. 2 イールドカーブ
- 金利の期間構造: 横軸に満期、縦軸に満期 が異なる債券のスポットレートを描いたもの がイールドカーブ

イールドカーブには、将来の金利予想変化(インフレ期待)が反映される

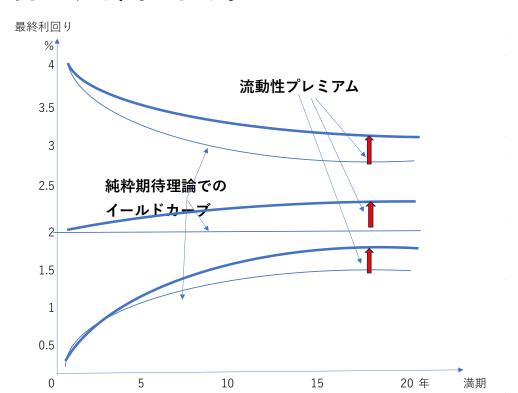

<フィッシャー方程式>

満期

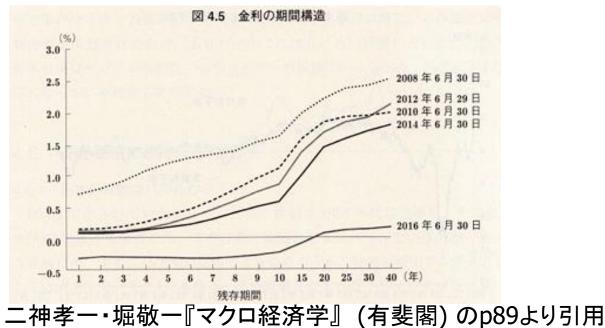
名目利子率=実質利子率+期待 インフレ率


≪(純粋)期待仮説≫

- 長期金利は裁定関係を通じて、短期金利とその将来 の予想短期金利の平均になる。
- 1年物スポットレートが10%、2年物スポットレートは11%⇔1年先の1年物フォワードレートは約12%


≪市場分断仮説、特定期間選好仮説≫

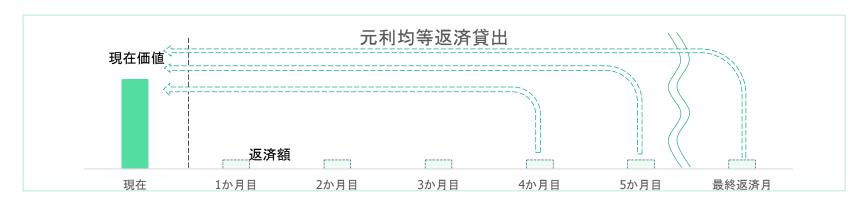
異なる期間の市場で裁定が働かず、各期間の金利に対する資金需給により決定。



≪流動性選好仮説≫

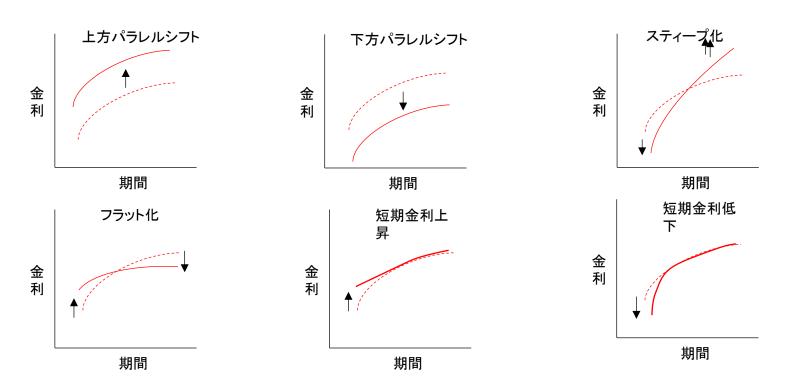
資金の運用期間が長いほど、金利変動による損失可能性が大きい。長期金利は、リスク・プレミアムだけ短期金利よりも高くなる。

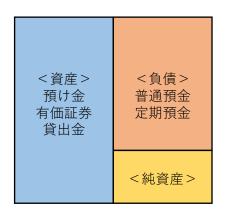
- 9.3 イールドカーブ・リスク
- デュレーション・ギャップはイールドカーブのパラレルシフト(平行移動)が前提
 →イールドカーブ・リスク(形状変化)は測れない



- ■「銀行勘定の金利リスク(IRRBB)」規制
- ①金利感応度を有する資産・負債に対して、決められた 金利ショックシナリオを与え、純資産の経済的価値の減 少額(∠EVE)を計測する
- ②金利ショックシナリオは「上方パラレルシフト」、「下方パラレルシフト」「スティープ化」、「フラット化」、「短期金利上昇」、「短期金利低下」の6つ(現在、信用金庫では上方、下方、スティープ化の3つが対象)
- ③ / EVEの最大値が自己資本の20%を超えていないかをモニタリング

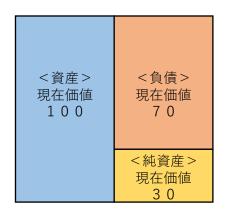
①経済価値の算出


貸出や預金も債券と同様に将来のCFを割り引いて現在価値を算出

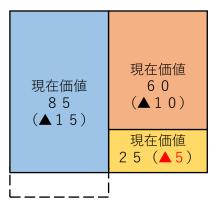


②金利ショックシナリオ

金利ショックシナリオは以下の6つ。パラレルシフトの変化幅は通貨により異なるが、代表的なものはJPY:100bp USD:200bp EUR:200bp



一般的に銀行や信用金庫は 短期調達(預金)、長期運用(貸出、有価証券)であるため 資産側のデュレーションが長い


金利が上昇したときの現在価値の変化

△資産>△負債

市場金利が上昇

市場金利の上昇に対して 負債側より資産側の現在価値が 大きく減少するため、 結果として<u>自己資本にあたる</u> 純資産の価値が減少

このときの純資産減少額 5が⊿EVEとなる

 <資産>
 <負債>

 現在価値
 70

 <純資産>
 現在価値

 30
 30

市場金利が低下

現在価値 115 (+15) 現在価値 35(+5) 市場金利の低下に対して 負債側より資産側の現在価値が 大きく増加するため、 結果として自己資本にあたる 純資産の価値は増加

現在価値ベースのリスクはない

 <資産>
 <負債>現在価値

 100
 現在価値

 70
 <純資産>現在価値

 30

市場金利が低下

現在価値 110 (+10) 現在価値 25(▲5) 生保会社は 負債側のデュレーションが長い

金利が低下したときの 現在価値の変化

Δ資産<Δ負債

4

9. イールドカーブ・リスク

DCF法(Discount Cash Flow)

$$\sum_{i=1}^{N} \frac{ACF_i - DCF_i}{(1+r_i)^i}$$

```
ACF ・・・ 資産のキャッシュフロー
```

③重要性テスト

ぬたせ ウル シルフ 人 ガリュラ ち

各金利ショックシナリオにより計測した⊿EVEのうち、最大値が自己資本の20%に収まっているかをモニタリング。これを「重要性テスト」という

● 銀	● 銀行勘定における金利リスク				
IRR	IRRBB1:金利リスク				
		1			
項番		ΔΕVΕ			
		令和5年3月期	令和4年3月期		
1	上方パラレルシフト	5,659	11,493		
2	下方パラレルシフト	0	0		
3	スティープ化	632	548		
4	フラット化				
5	短期金利上昇				
6	短期金利低下				
7	最大値	5,659	11,493		
		↑ 令和 5 年 3 月期			
8	自己資本の額		117,396		

信用金庫の9割以上は 上方パラレルで最大の⊿EVE

城北金庫を例にすると 令和5年3月期の重要性テストは

$$\frac{5,659}{117,396} = 4.82\%$$

(単位:百万円)

1. ロルロ 17

<マイナス金利政策>

2013年4月 量的・質的金融緩和

2016年2月 マイナス金利付き

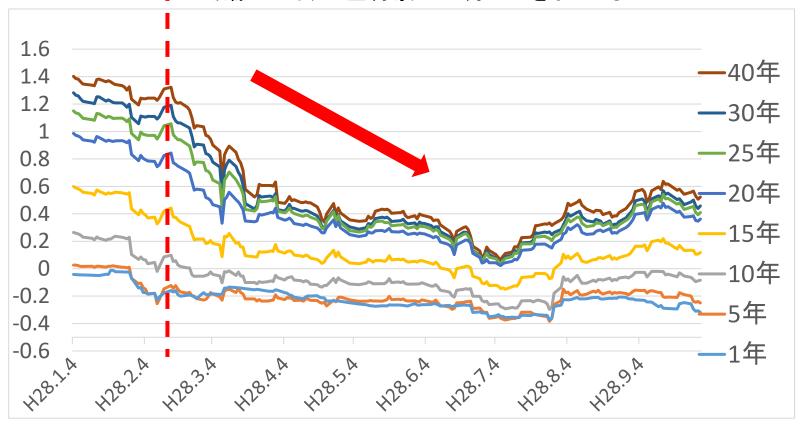
量 的 · 質 的 金 融 緩 和

2016年9月 長短金利操作付き

量 的・質 的 金 融 緩 和

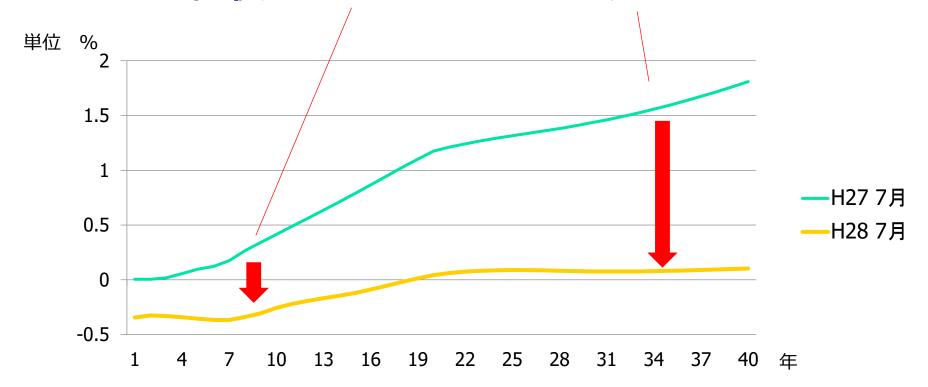
マイナス0.1%に

補論①. マイナス金利政策の影響

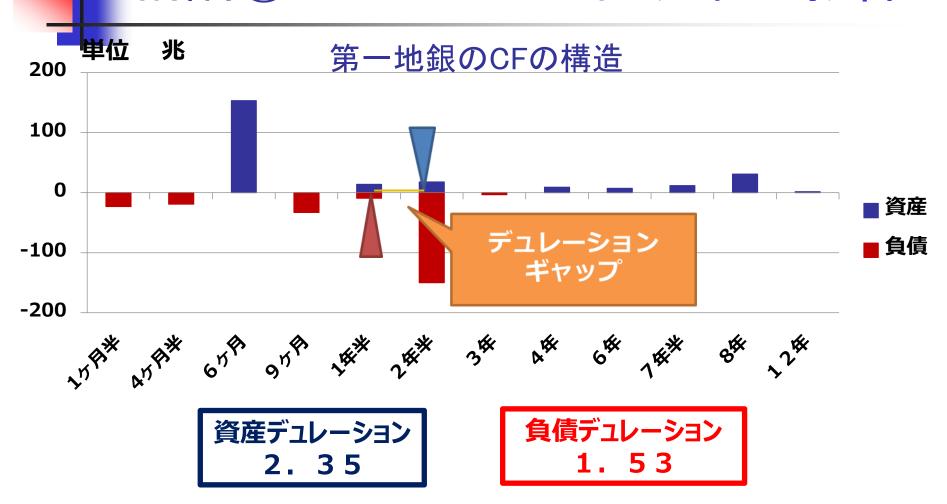


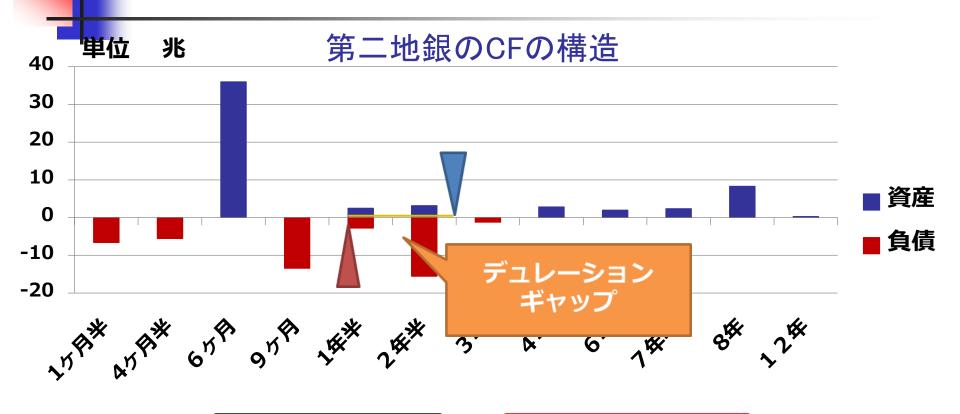
国債

国債の債券価格が上昇国債の利回り低下

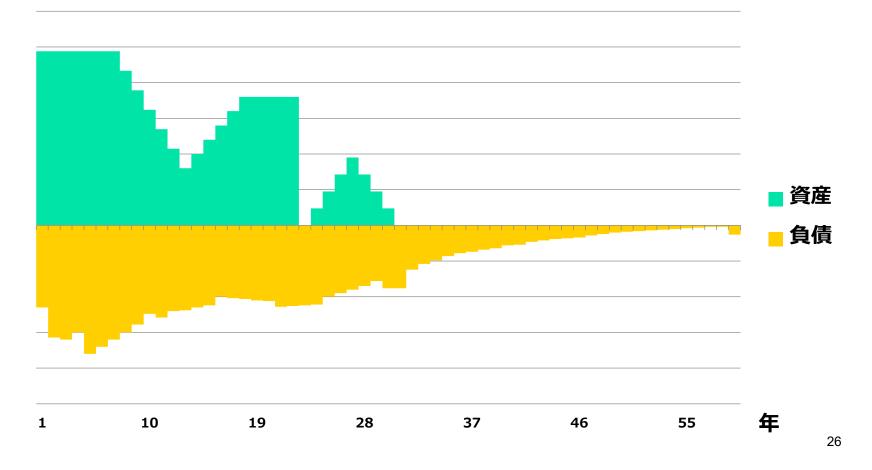

▶ ※破線はマイナス金利導入の2月16日を示したもの

(出所) 財務省 国債金利情報をもとに作成




国債のイールドカーブのフラット化

(出所)財務省 国債金利情報をもとに作成



資産デュレーション 2.44 負債デュレーション 1.33

【出所】各銀行のデスクロージャーを基に作成

生保のCFの構造(イメージ)

銀行3業態と生保のデュレーション

	資産 デュレーション	負債 デュレーション	デュレーション ギャップ
メガバンク	1. 73	1. 66	0. 14
第一地銀	2. 35	1. 53	0. 90
第二地銀	2. 44	1. 33	1. 19
生保	11	15	▲3. 1

	デュレーション• ギャップ	経済価値ベース の純資産変化率
メガバンク	0.14	1.5%
第一地銀	0.90	2.7%
第二地銀	1.19	4.3%
生保	▲ 3.1	40.5%

補論② 資金流動性リスク管理

表 8.3 資金調達源の範囲

公開市場	相対	非伝統的	コア資産	資本市場資金
投機的 ←				安定的
プローカー/	私募大口取引	私募特約取引	要求払い預金	普通株
ディーラー	(例、大口定期	(例. 5年物	・マネー・マーケッ	・優先株
(例:讓渡性	預金,銀行引受	特別定期預金)	ト・アカウント	· 中期债/
預金)	手形。レポ、		貯蓄口座	長期債
	連邦準備預金)		·定期預金	

(出所)『リスクマネジメントの本質』より引用

補論② 資金流動性リスク管理

表 8.4 事業部門 XYZ の流動性格付手法(単位: 万ドル)

流動性化	共給	流動性調達	
格付スコア	金額	格付スコア	金額
+5	\$1,000	-1	\$400
+4	\$300	-2	\$800
+3	\$600	-3	\$600
+2	\$500	-4	\$300
+1	\$400	-5	\$1,000
合計	9,400	合計	-10,000
差		-600 (-9,400-10,000)	

(出所)『リスクマネジメントの本質』より引用

本日の課題

- (1)10年満期、5%クーポンの利付債が95円で売り出されている。この債券を2年後に99円で売却する場合、「保有期間利回り」はいくらになるか?
- (2)開始時点からの各年限のスポットレートが下表のとき、1年先、2年先のフォワードレートはいくらになるか?

年限	1	2	3
スポットレート	2%	2. 3%	2.5%

本日の課題

■ (3)各時点からの1年物フォワードレートが下表のとき、イールドカーブを描くための年限2年、および3年のスポットレートはいくらになるか?

開始時点	0	1	2
フォワード レート	2%	2. 3%	2. 5%

■ (注)1年物スポットレート=1年物フォワードレート=2%